Uperieure S Ormale N Ecole Bounds for Disconnection Exponents Bounds for Disconnection Exponents Bounds for Disconnection Exponents
نویسندگان
چکیده
We slightly inprove the upper bounds of disconnection exponents for planar Brownian motion that we derived in an earlier paper. We also give a plain proof of the lower bound 1=(2) for the disconnection exponent for one path.
منابع مشابه
Uperieure S Ormale N Ecole Monte-carlo Tests and Conjectures for Disconnection Exponents Monte-carlo Tests and Conjectures for Disconnection Exponents Monte-carlo Tests and Conjectures for Disconnection Exponents
Using Monte-Carlo simulations, we estimate numerically disconnec-tion exponents for planar Brownian motions. These simulations tend to connrm conjectures by Duplantier and Mandelbrot.
متن کاملBounds for Disconnection Exponents
We improve the upper bounds of disconnection exponents for planar Brownian motion that we derived in an earlier paper. We also give a plain proof of the lower bound 1/(2π) for the disconnection exponent for one path.
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کاملSimulations and Conjectures for Disconnection Exponents
Using Monte-Carlo simulations, we estimate numerically disconnection exponents for planar Brownian motions. These simulations tend to confirm conjectures by Duplantier and Mandelbrot.
متن کاملElectronic Communications in Probability Simulations and Conjectures for Disconnection Exponents
Using Monte-Carlo simulations, we estimate numerically disconnection exponents for planar Brownian motions. These simulations tend to connrm conjectures by Duplantier and Mandel-brot.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995